Pure Mathematics 3

Exercise 3B

1 a

b

c

3 a

b You can see that the graphs of $y=\sec \theta$ and $y=-\cos \theta$ do not meet, so $\sec \theta=-\cos \theta$ has no solutions.

The same result can be found algebraically $\sec \theta=-\cos \theta$
$\Rightarrow \frac{1}{\cos \theta}=-\cos \theta$
$\Rightarrow \cos ^{2} \theta=-1$
There are no solutions of this equation for real θ.

4 a

b The curves meet at the maxima and minima of $y=\sin 2 \theta$, and on the θ-axis at odd integer multiples of 90°.

In the interval $0 \leq \theta \leq 360^{\circ}$ there are 6 intersections. So there are 6 solutions of $\cot \theta=\sin 2 \theta$ in the interval $0 \leq \theta \leq 360^{\circ}$

Pure Mathematics 3

5 a

b $y=\cot \left(\theta+90^{\circ}\right)$ is a reflection in the θ-axis of $y=\tan \theta$, so $\cot \left(\theta+90^{\circ}\right)=-\tan \theta$

6 a i The graph of $y=\tan \left(\theta+\frac{\pi}{2}\right)$ is the same as that of $y=\tan \theta$ translated by the vector $\binom{-\frac{\pi}{2}}{0}$, i.e by $\frac{\pi}{2}$ to the left.
ii The graph of $y=\cot (-\theta)$ is the same as that of $y=\cot \theta$ reflected in the y-axis.
iii The graph of $y=\operatorname{cosec}\left(\theta+\frac{\pi}{4}\right)$ is the same as that of $y=\operatorname{cosec} \theta$ translated by the vector $\binom{-\frac{\pi}{4}}{0}$
iv The graph of $\sec \left(\theta-\frac{\pi}{4}\right)$ is the same as that of $y=\sec \theta$ translated by the vector $\binom{\frac{\pi}{4}}{0}$
b

(reflection of $y=\cot \theta$ in the y-axis)
$\tan \left(\theta+\frac{\pi}{2}\right)=\cot (-\theta)$

INTERNATIONAL A LEVEL

Pure Mathematics 3

6 b

$\operatorname{cosec}\left(\theta+\frac{\pi}{4}\right)=\sec \left(\theta-\frac{\pi}{4}\right)$

7 a A stretch of $y=\sec \theta$ in the θ direction with scale factor $\frac{1}{2}$
Minimum at $\left(180^{\circ}, 1\right)$
Maxima at $\left(90^{\circ},-1\right)$ and $\left(270^{\circ},-1\right)$
It meets the y-axis at $(0,1)$

b Reflection in θ-axis of $y=\operatorname{cosec} \theta$
Minimum at $\left(270^{\circ}, 1\right)$
Maximum at $\left(90^{\circ},-1\right)$

c Translation of $y=\sec \theta$ by the vector $\binom{0}{1}$, i.e. +1 in the y direction.
It meets x-axis at $\left(180^{\circ}, 0\right)$
There is a maximum at $\left(180^{\circ}, 0\right)$
It meets the y-axis at $(0,2)$

INTERNATIONAL A LEVEL

Pure Mathematics 3

7 d Translation of $y=\operatorname{cosec} \theta$ by the
vector $\binom{30}{0}$
Minimum at $\left(120^{\circ}, 1\right)$
Maximum at $\left(300^{\circ},-1\right)$
It meets the y-axis at $(0,-2)$

e $y=2 \sec \left(\theta-60^{\circ}\right)$ is $y=\sec \theta$
translated by the vector $\binom{60}{0}$ and then stretched by a scale factor 2 in the y direction.

Minimum at $\left(60^{\circ}, 2\right)$
Maximum at $\left(240^{\circ},-2\right)$
It meets the y-axis at $(0,4)$

f $y=\operatorname{cosec}\left(2 \theta+60^{\circ}\right)$ is $y=\operatorname{cosec} \theta$
translated by the vector $\binom{-60}{0}$ and
then stretched by a scale factor $\frac{1}{2}$ in the θ direction.

Minima at $\left(15^{\circ}, 1\right),\left(195^{\circ}, 1\right)$
Maxima at $\left(105^{\circ},-1\right),\left(285^{\circ},-1\right)$
It meets the y-axis at $(0,1.155)$

7 g $y=-\cot 2 \theta$ is $y=\cot \theta$ stretched by a scale factor $\frac{1}{2}$ in the θ direction and then reflected in the x-axis.
It meets the θ-axis at $\left(45^{\circ}, 0\right),\left(135^{\circ}, 0\right)$, $\left(225^{\circ}, 0\right)$ and $\left(315^{\circ}, 0\right)$

h $y=1-2 \sec \theta=-2 \sec \theta+1$ is $y=\sec \theta$ stretched by a scale factor 2 in the y direction, reflected in the x-axis and then translated by the vector $\binom{0}{1}$
Minima at $\left(180^{\circ}, 3\right)$
Maxima at $(0,-1),\left(360^{\circ},-1\right)$
It meets the y-axis at $(0,-1)$

8 a The period of $\sec \theta$ is 2π radians $y=\sec 3 \theta$ is a stretch of $y=\sec \theta$ with scale factor $\frac{1}{3}$ in the θ direction.
So the period of $\sec 3 \theta$ is $\frac{2 \pi}{3}$
b $\operatorname{cosec} \theta$ has a period of 2π $\operatorname{cosec} \frac{1}{2} \theta$ is a stretch of $\operatorname{cosec} \theta$ in the θ direction with scale factor 2.
So the period of $\operatorname{cosec} \frac{1}{2} \theta$ is 4π
c $\cot \theta$ has a period of π
$2 \cot \theta$ is a stretch in the y direction by scale factor 2 . So the periodicity is not affected.
The period of $2 \cot \theta$ is π
d $\sec \theta$ has a period of 2π
$\sec (-\theta)$ is a reflection in the y-axis.
So the periodicity is not affected.
The period of $\sec (-\theta)$ is 2π
9 a $y=3+5 \operatorname{cosec} \theta$ is $y=\operatorname{cosec} \theta$ stretched by a scale factor 5 in the y direction and then translated by the vector $\binom{0}{3}$

b $-2<k<8$

Pure Mathematics 3

10 a

b The θ coordinates at points at which the gradient is zero are at the maxima and minima. These are $\theta=-\pi, 0, \pi, 2 \pi$
c Minimum value of $\frac{1}{1+2 \sec \theta}$
is where $1+2 \sec \theta$ is a maximum.
So minimum value of $\frac{1}{1+2 \sec \theta}$
is $\frac{1}{-1}=-1$
The first positive value of θ where this occurs is when $\theta=\pi$ (see diagram)
Maximum value of $\frac{1}{1+2 \sec \theta}$
is where $1+2 \sec \theta$ is a minimum.
So maximum value of $\frac{1}{1+2 \sec \theta}$ is $\frac{1}{3}$
The first positive value of θ where this occurs is when $\theta=2 \pi$
(see diagram)

