Solution Bank

Exercise 3B

b 2 solutions

b You can see that the graphs of $y = \sec \theta$ and $y = -\cos \theta$ do not meet, so $\sec \theta = -\cos \theta$ has no solutions.

The same result can be found algebraically $\sec \theta = -\cos \theta$ $\Rightarrow \frac{1}{\cos \theta} = -\cos \theta$ $\Rightarrow \cos^2 \theta = -1$

There are no solutions of this equation for real θ .

b The curves meet at the maxima and minima of $y = \sin 2\theta$, and on the θ -axis at odd integer multiples of 90°.

In the interval $0 \le \theta \le 360^\circ$ there are 6 intersections. So there are 6 solutions of $\cot \theta = \sin 2\theta$ in the interval $0 \le \theta \le 360^\circ$

INTERNATIONAL A LEVEL

Pure Mathematics 3

b $y = \cot(\theta + 90^\circ)$ is a reflection in the θ -axis of $y = \tan \theta$, so $\cot(\theta + 90^\circ) = -\tan \theta$

6 **a** i The graph of
$$y = \tan\left(\theta + \frac{\pi}{2}\right)$$
 is the same as that of $y = \tan\theta$ translated by the vector $\begin{pmatrix} -\frac{\pi}{2} \\ 0 \end{pmatrix}$, i.e by $\frac{\pi}{2}$ to the left.

ii The graph of $y = \cot(-\theta)$ is the same as that of $y = \cot \theta$ reflected in the *y*-axis.

Solution Bank

- iii The graph of $y = \operatorname{cosec}\left(\theta + \frac{\pi}{4}\right)$ is the same as that of $y = \operatorname{cosec} \theta$ translated by the vector $\begin{pmatrix} -\frac{\pi}{4}\\ 0 \end{pmatrix}$
- iv The graph of $\sec\left(\theta \frac{\pi}{4}\right)$ is the same as that of $y = \sec\theta$ translated by the vector $\begin{pmatrix} \frac{\pi}{4} \\ 0 \end{pmatrix}$

(reflection of
$$y = \cot \theta$$
 in the y-axis)
 $\tan\left(\theta + \frac{\pi}{2}\right) = \cot(-\theta)$

7 a A stretch of y = sec θ in the θ direction with scale factor ¹/₂
Minimum at (180°,1)
Maxima at (90°,-1) and (270°,-1)
It meets the y-axis at (0, 1)

Solution Bank

b Reflection in θ -axis of $y = \csc \theta$ Minimum at (270°, 1) Maximum at (90°, -1)

c Translation of $y = \sec \theta$ by the vector $\begin{pmatrix} 0\\1 \end{pmatrix}$, i.e. +1 in the *y* direction. It meets *x*-axis at (180°, 0) There is a maximum at (180°, 0) It meets the *y*-axis at (0, 2)

INTERNATIONAL A LEVEL

Pure Mathematics 3

7 **d** Translation of $y = \csc \theta$ by the vector $\begin{pmatrix} 30 \\ 0 \end{pmatrix}$ Minimum at (120°, 1)

Maximum at $(300^\circ, -1)$

It meets the *y*-axis at (0, -2)

e $y = 2 \sec(\theta - 60^\circ)$ is $y = \sec \theta$ translated by the vector $\begin{pmatrix} 60\\0 \end{pmatrix}$ and

then stretched by a scale factor 2 in the y direction.

Minimum at $(60^\circ, 2)$ Maximum at $(240^\circ, -2)$ It meets the *y*-axis at (0, 4)

Solution Bank

f $y = \csc(2\theta + 60^\circ)$ is $y = \csc\theta$ translated by the vector $\begin{pmatrix} -60\\ 0 \end{pmatrix}$ and

then stretched by a scale factor $\frac{1}{2}$ in the θ direction.

Minima at (15°, 1), (195°, 1) Maxima at (105°, -1), (285°, -1) It meets the *y*-axis at (0, 1.155)

7 g $y = -\cot 2\theta$ is $y = \cot \theta$ stretched by a scale factor $\frac{1}{2}$ in the θ direction and then reflected in the *x*-axis. It meets the θ -axis at (45°, 0), (135°, 0), (225°, 0) and (315°, 0)

h $y = 1 - 2 \sec \theta = -2 \sec \theta + 1$ is $y = \sec \theta$ stretched by a scale factor 2 in the y direction, reflected in the x-axis and then translated by

the vector $\begin{pmatrix} 0\\1 \end{pmatrix}$

Minima at (180°, 3)

Maxima at (0, -1), $(360^\circ, -1)$ It meets the *y*-axis at (0, -1)

Solution Bank

8 a The period of $\sec \theta$ is 2π radians $y = \sec 3\theta$ is a stretch of $y = \sec \theta$ with scale factor $\frac{1}{3}$ in the θ direction.

So the period of $\sec 3\theta$ is $\frac{2\pi}{3}$

- b cosec θ has a period of 2π
 cosec ½ θ is a stretch of cosec θ in the
 θ direction with scale factor 2.
 So the period of cosec ½ θ is 4π
- c cot θ has a period of π
 2 cot θ is a stretch in the y direction by scale factor 2. So the periodicity is not affected.
 The period of 2 cot θ is π
- d sec θ has a period of 2π
 sec(-θ) is a reflection in the y-axis.
 So the periodicity is not affected.
 The period of sec(-θ) is 2π
- 9 a $y=3+5\csc\theta$ is $y=\csc\theta$ stretched by a scale factor 5 in the y direction and then translated

by the vector
$$\begin{pmatrix} 0\\ 3 \end{pmatrix}$$

- **b** The θ coordinates at points at which the gradient is zero are at the maxima and minima. These are $\theta = -\pi, 0, \pi, 2\pi$
- **c** Minimum value of $\frac{1}{1+2\sec\theta}$

is where $1 + 2 \sec \theta$ is a maximum.

So minimum value of $\frac{1}{1+2\sec\theta}$

is
$$\frac{1}{-1} = -1$$

The first positive value of θ where this occurs is when $\theta = \pi$ (see diagram)

Maximum value of $\frac{1}{1+2\sec\theta}$

is where $1 + 2 \sec \theta$ is a minimum.

So maximum value of $\frac{1}{1+2 \sec \theta}$ is $\frac{1}{3}$ The first positive value of θ where this occurs is when $\theta = 2\pi$ (see diagram)

Solution Bank

